Endpoint estimates, Extrapolation Theory and the Bochner-Riesz operator

Carlos Domingo-Salazar - Universitat de Barcelona

Ph.D. Thesis Advisor: M. J. Carro

Carmona, Spain

May 23, 2015

Extrapolation theory

- Classical A_p theory
- \widehat{A}_p weights and a new extrapolation
- $(\varepsilon, \delta)-$ atomic operators

2 The Bochner-Riesz operator at the critical index

ション ふゆ アメリア メリア しょうくしゃ

- A restricted weak-type estimate
- Averages of operators

The Hardy-Littlewood maximal operator

Definition

We consider the Hardy-Littlewood maximal operator defined by

$$Mf(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_Q |f(y)| dy.$$

$$L^p$$
 and $L^{p,\infty}$ spaces

Definition

Given a weight w > 0, for $1 \le p < \infty$:

$$||f||_{L^{p}(w)}^{p} = \int_{\mathbb{R}^{n}} |f(x)|^{p} w(x) dx,$$

and also

$$||f||_{L^{p,\infty}(w)}^{p} = \sup_{t>0} t^{p} \int_{\{|f|>t\}} w(x) dx.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

It holds that $L^p \subsetneq L^{p,\infty}$.

$$L^p$$
 and $L^{p,\infty}$ spaces

Definition

Given a weight w > 0, for $1 \le p < \infty$:

$$||f||_{L^{p}(w)}^{p} = \int_{\mathbb{R}^{n}} |f(x)|^{p} w(x) dx,$$

and also

$$||f||_{L^{p,\infty}(w)}^{p} = \sup_{t>0} t^{p} w(\{|f| > t\}).$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

It holds that $L^p \subsetneq L^{p,\infty}$.

$$L^p$$
 and $L^{p,\infty}$ spaces

Definition

Given a weight w > 0, for $1 \le p < \infty$:

$$||f||_{L^{p}(w)}^{p} = \int_{\mathbb{R}^{n}} |f(x)|^{p} w(x) dx,$$

and also

$$\|f\|_{L^{p,\infty}(w)}^p = \sup_{t>0} t^p w(\{|f|>t\}).$$

It holds that $L^p \subsetneq L^{p,\infty}$. For an operator T, we will say

$$L^p$$
 and $L^{p,\infty}$ spaces

Definition

Given a weight w > 0, for $1 \le p < \infty$:

$$\|f\|_{L^p(w)}^p = \int_{\mathbb{R}^n} |f(x)|^p w(x) dx,$$

and also

$$\|f\|_{L^{p,\infty}(w)}^p = \sup_{t>0} t^p w(\{|f| > t\}).$$

It holds that $L^p \subsetneq L^{p,\infty}$. For an operator T, we will say

 $||Tf||_{L^p} \lesssim ||f||_{L^p} \quad \rightsquigarrow \mathsf{STRONG-TYPE} \ (p,p)$

$$L^p$$
 and $L^{p,\infty}$ spaces

Definition

Given a weight w > 0, for $1 \le p < \infty$:

$$\|f\|_{L^p(w)}^p = \int_{\mathbb{R}^n} |f(x)|^p w(x) dx,$$

and also

$$\|f\|_{L^{p,\infty}(w)}^p = \sup_{t>0} t^p w(\{|f| > t\}).$$

It holds that $L^p \subsetneq L^{p,\infty}$. For an operator T, we will say

 $\|Tf\|_{L^{p,\infty}} \lesssim \|f\|_{L^p} \quad \rightsquigarrow \mathsf{WEAK-TYPE} \ (p,p)$

$$L^p$$
 and $L^{p,\infty}$ spaces

Definition

Given a weight w > 0, for $1 \le p < \infty$:

$$||f||_{L^{p}(w)}^{p} = \int_{\mathbb{R}^{n}} |f(x)|^{p} w(x) dx,$$

and also

$$\|f\|_{L^{p,\infty}(w)}^p = \sup_{t>0} t^p w(\{|f|>t\}).$$

It holds that $L^p \subsetneq L^{p,\infty}$. For an operator T, we will say

 $\|T\chi_E\|_{L^{p,\infty}} \lesssim \|\chi_E\|_{L^p} \quad \rightsquigarrow \mathsf{RESTRICTED} \ \mathsf{WEAK-TYPE} \ (p,p)$

A_p weights – Muckenhoupt (1972)

For every 1 :

$$\|Mf\|_{L^p(w)} \lesssim \|f\|_{L^p(w)} \Leftrightarrow w \in A_p,$$

<□▶ < □▶ < □▶ < □▶ < □▶ = □ の < ⊙

$$A_p$$
 weights – Muckenhoupt (1972)

For every 1 :

$$\|Mf\|_{L^p(w)} \lesssim \|f\|_{L^p(w)} \Leftrightarrow w \in A_p,$$

and $w \in A_p$ if

$$||w||_{A_p} = \sup_{Q} \frac{w(Q)}{|Q|} \left(\frac{w^{-p'/p}(Q)}{|Q|}\right)^{p/p'} < \infty.$$

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

$$A_p$$
 weights – Muckenhoupt (1972)

For every 1 :

$$\|Mf\|_{L^p(w)} \lesssim \|f\|_{L^p(w)} \Leftrightarrow w \in A_p,$$

and $w \in A_p$ if

$$||w||_{A_p} = \sup_{Q} \frac{w(Q)}{|Q|} \left(\frac{w^{-p'/p}(Q)}{|Q|}\right)^{p/p'} < \infty.$$

For p=1, $\|Mf\|_{L^{1,\infty}(u)}\lesssim \|f\|_{L^{1}(u)}\Leftrightarrow u\in A_{1},$

and $u \in A_1$ if

$$||u||_{A_1} = \inf\{C > 0 : Mu(x) \le Cu(x) \text{ a.e.}\} < \infty.$$

▲□▶ ▲圖▶ ▲直▶ ▲直▶ 三直 - 釣��

$$A_p$$
 weights – Muckenhoupt (1972)

For every 1 :

$$\|Mf\|_{L^p(w)} \lesssim \|f\|_{L^p(w)} \Leftrightarrow w \in A_p,$$

and $w \in A_p$ if

$$||w||_{A_p} = \sup_{Q} \frac{w(Q)}{|Q|} \left(\frac{w^{-p'/p}(Q)}{|Q|}\right)^{p/p'} < \infty.$$

For p=1, $\|Mf\|_{L^{1,\infty}(u)}\lesssim \|f\|_{L^{1}(u)}\Leftrightarrow u\in A_{1},$

and $u \in A_1$ if

$$||u||_{A_1} = \inf\{C > 0 : Mu(x) \le Cu(x) \text{ a.e.}\} < \infty.$$

We write, for $1 \le p < \infty$, $\|Mf\|_{L^{p,\infty}(w)} \lesssim \|f\|_{L^{p}(w)} \Leftrightarrow w \in A_{p}$.

Characterization of A_p

P. Jones' Factorization:

$$w \in A_p \Leftrightarrow w = v^{1-p}u$$
, for some $u, v \in A_1$.

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Characterization of A_p

P. Jones' Factorization:

$$w \in A_p \Leftrightarrow w = v^{1-p}u$$
, for some $u, v \in A_1$.

Coifman - Rochberg's construction of A_1 weights:

 $v \in A_1 \Leftrightarrow v \approx (Mf)^{\delta}$, for some $f \in L^1_{loc}$ and $0 \le \delta < 1$.

イロト 不良 アイヨア イヨア ヨー ろくぐ

Characterization of A_p

P. Jones' Factorization:

$$w \in A_p \Leftrightarrow w = v^{1-p}u$$
, for some $u, v \in A_1$.

Coifman - Rochberg's construction of A_1 weights:

$$v \in A_1 \Leftrightarrow v \approx (Mf)^{\delta}$$
, for some $f \in L^1_{loc}$ and $0 \le \delta < 1$.

Therefore, we can think of A_p weights as those of the form:

Proposition

$$A_p = \left\{ (Mf)^{\delta(1-p)} u \, : \, f \in L^1_{loc}, 0 < \delta < 1 \text{ and } u \in A_1 \right\}.$$

ション ふゆ アメリア メリア しょうくしゃ

An important property: Reverse Hölder

With this characterization, for every $w \in A_p$:

$$w = (Mf)^{\delta(1-p)}u = (Mf)^{\delta(1-p)}(Mg)^{\beta}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

An important property: Reverse Hölder

With this characterization, for every $w \in A_p$:

$$w = (Mf)^{\delta(1-p)}u = (Mf)^{\delta(1-p)}(Mg)^{\beta}.$$

So it is immediate to see that, for some small ε , $\left(\varepsilon < \min\left\{\frac{1-\delta}{\delta}, \frac{1-\beta}{\beta}\right\}\right)$,

$$w^{1+\varepsilon} = (Mf)^{\delta'(1-p)} (Mg)^{\beta'},$$

with $0<\delta',\beta'<1$ and hence,

$$w^{1+\varepsilon} \in A_p.$$

イロト 不同 トイヨト イヨト ヨー ろくで

Rubio de Francia

In this setting:

Theorem (Rubio de Francia's Extrapolation - 1984)

Given a sublinear operator T such that for some $1 \leq p_0 < \infty$ we have

$$\|Tf\|_{L^{p_0,\infty}(w)} \lesssim \|f\|_{L^{p_0}(w)}$$
 for every $w \in A_{p_0}$,

then, for every 1 ,

 $||Tf||_{L^p(w)} \lesssim ||f||_{L^p(w)}$ for every $w \in A_p$.

イロト 不同 トイヨト イヨト ヨー ろくで

Rubio de Francia

In this setting:

Theorem (Rubio de Francia's Extrapolation - 1984)

Given a sublinear operator T such that for some $1 \leq p_0 < \infty$ we have

$$\|Tf\|_{L^{p_0,\infty}(w)} \lesssim \|f\|_{L^{p_0}(w)}$$
 for every $w \in A_{p_0}$,

then, for every 1 ,

$$||Tf||_{L^p(w)} \lesssim ||f||_{L^p(w)}$$
 for every $w \in A_p$.

イロト 不同 トイヨト イヨト ヨー ろくで

Remark

Notice that the endpoint p = 1 cannot be reached.

Remark (This is the plan...)

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Take for instance $T = M \circ M$.

Goal

Remark (This is the plan...)

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

A weaker assumption on the boundedness.

Goal

Remark (This is the plan...)

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

A weaker assumption on the boundedness.

Goal

Remark (This is the plan...)

<□▶ < □▶ < □▶ < □▶ < □▶ = □ の < ⊙

A stronger assumption on the weights.

Goal

Remark (This is the plan...)

$$\|T\chi_E\|_{L^{p_0,\infty}(w)} \lesssim \|\chi_E\|_{L^{p_0}(w)}, \quad \forall w \in \widehat{A}_{p_0}$$
$$" \Downarrow "$$
$$\|Tf\|_{L^{1,\infty}(u)} \lesssim \|f\|_{L^1(u)}, \quad \forall u \in A_1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A stronger assumption on the weights.

Remark (This is the plan...)

We only get restricted weak-type (1,1), but we will usually deal with it. But, how do we find these new weights \widehat{A}_p ??

イロト 不良 アイヨア イヨア ヨー ろくぐ

Searching the weights

Kerman and Torchinsky (1982): For $1 \le p < \infty$:

$$\|M\chi_E\|_{L^{p,\infty}(w)} \lesssim \|\chi_E\|_{L^p(w)} \Leftrightarrow w \in A_p^{\mathcal{R}}$$

where, for $1 \leq p < \infty$, $w \in A_p^{\mathcal{R}}$ if

$$\|w\|_{A_p^{\mathcal{R}}} = \sup_{F \subseteq Q} \frac{|F|}{|Q|} \left(\frac{w(Q)}{w(F)}\right)^{1/p} < \infty.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Searching the weights

Kerman and Torchinsky (1982): For $1 \le p < \infty$:

$$||M\chi_E||_{L^{p,\infty}(w)} \lesssim w(E)^{1/p} \Leftrightarrow w \in A_p^{\mathcal{R}}$$

where, for $1 \leq p < \infty$, $w \in A_p^{\mathcal{R}}$ if

$$\|w\|_{A_p^{\mathcal{R}}} = \sup_{F \subseteq Q} \frac{|F|}{|Q|} \left(\frac{w(Q)}{w(F)}\right)^{1/p} < \infty.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Searching the weights

Kerman and Torchinsky (1982): For $1 \le p < \infty$:

$$||M\chi_E||_{L^{p,\infty}(w)} \lesssim w(E)^{1/p} \Leftrightarrow w \in A_p^{\mathcal{R}}$$

where, for $1 \leq p < \infty$, $w \in A_p^{\mathcal{R}}$ if

$$\|w\|_{A_p^{\mathcal{R}}} = \sup_{F \subseteq Q} \frac{|F|}{|Q|} \left(\frac{w(Q)}{w(F)}\right)^{1/p} < \infty.$$

イロト 不同 トイヨト イヨト ヨー ろくで

Remark

 $A_1^{\mathcal{R}} = A_1...$ we'll see why this makes sense!!

Searching the weights

The key fact for the new extrapolation:

Theorem (Carro, Grafakos, Soria)

Given a locally integrable function f and $u \in A_1$, then

$$(Mf)^{1-p}u \in A_p^{\mathcal{R}},$$

with

$$||(Mf)^{1-p}u||_{A_p^{\mathcal{R}}} \lesssim ||u||_{A_1}^{1/p}.$$

イロト 不同 トイヨト イヨト ヨー ろくで

Searching the weights

The key fact for the new extrapolation:

Theorem (Carro, Grafakos, Soria)

Given a locally integrable function f and $u \in A_1$, then

$$(Mf)^{1-p}u \in A_p^{\mathcal{R}},$$

with

$$||(Mf)^{1-p}u||_{A_p^{\mathcal{R}}} \lesssim ||u||_{A_1}^{1/p}.$$

Definition

$$\widehat{A}_p = \left\{ w = (Mf)^{1-p}u, \text{ where } f \in L^1_{loc}, u \in A_1 \right\} \subseteq A_p^{\mathcal{R}},$$

イロト 不同 トイヨト イヨト ヨー ろくで

The extrapolation result

Theorem (Carro, Grafakos, Soria)

Given a sublinear operator T such that for some $1 < p_0 < \infty$ we have

$$\|T\chi_E\|_{L^{p_0,\infty}(w)} \lesssim w(E)^{1/p_0}$$
 for every $w \in \widehat{A}_{p_0}$,

then, for every $1 \leq p < \infty$,

$$||T\chi_E||_{L^{p,\infty}(w)} \lesssim w(E)^{1/p}$$
 for every $w \in \widehat{A}_p$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三三 - のへで

The extrapolation result

Theorem (Carro, Grafakos, Soria)

Given a sublinear operator T such that for some $1 < p_0 < \infty$ we have

$$\|T\chi_E\|_{L^{p_0,\infty}(w)} \lesssim w(E)^{1/p_0}$$
 for every $w \in \widehat{A}_{p_0}$,

then, for every $1 \leq p < \infty$,

$$\|T\chi_E\|_{L^{p,\infty}(w)} \lesssim w(E)^{1/p} \quad \text{ for every } w \in \widehat{A}_p.$$

イロト 不同 トイヨト イヨト ヨー ろくで

Remark

Here we **reach** the endpoint $\mathbf{p} = \mathbf{1}$, and $\widehat{A}_p = A_1!$

Overview

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

A weaker hypothesis

If for some $1 < p_0 < \infty$

$$||T\chi_E||_{L^{p_0,\infty}(w)} \lesssim w(E)^{1/p_0} \quad \forall E, w \in \widehat{A}_{p_0}.$$

then, for every $1 \leq p < \infty$

$$||T\chi_E||_{L^{p,\infty}(w)} \lesssim w(E)^{1/p} \quad \forall E, w \in \widehat{A}_p.$$

A weaker hypothesis

If for some $1 < p_0 < \infty$

$$||T\chi_E||_{L^{p_0,\infty}((Mf)^{1-p_0}u)} \lesssim [(Mf)^{1-p_0}u](E)^{1/p_0} \quad \forall E, f, u.$$

then, for every $1 \leq p < \infty$

$$||T\chi_E||_{L^{p,\infty}((Mf)^{1-p}u)} \lesssim [(Mf)^{1-p}u](E)^{1/p} \quad \forall E, f, u.$$

イロト 不良 アイヨア イヨア ヨー ろくぐ
Reaching L^1 via Extrapolation – C. Domingo-Salazar Extrapolation theory \hat{A}_p weights and a new extrapolation

A weaker hypothesis

If for some $1 < p_0 < \infty$

$$||T\chi_E||_{L^{p_0,\infty}((Mf)^{1-p_0}u)} \lesssim [(Mf)^{1-p_0}u](E)^{1/p_0} \quad \forall E, f, u$$

then, for every $1 \leq p < \infty$

$$||T\chi_E||_{L^{p,\infty}((Mf)^{1-p}u)} \lesssim [(Mf)^{1-p}u](E)^{1/p} \quad \forall E, f, u.$$

But we also have: If for some $1 < p_0 < \infty$

$$||T\chi_E||_{L^{p_0,\infty}((M\chi_E)^{1-p_0}u)} \lesssim u(E)^{1/p_0} \quad \forall E, u.$$

then, for every $1 \leq p < \infty$

$$||T\chi_E||_{L^{p,\infty}((M\chi_E)^{1-p}u)} \lesssim u(E)^{1/p} \quad \forall E, u.$$

イロト 不良 トイヨト イヨト ヨー ろくで

Reaching L^1 via Extrapolation – C. Domingo-Salazar Extrapolation theory \widehat{A}_n weights and a new extrapolation

A weaker hypothesis

If for some $1 < p_0 < \infty$

 $||T\chi_E||_{L^{p_0,\infty}((Mf)^{1-p_0}u)} \lesssim [(Mf)^{1-p_0}u](E)^{1/p_0} \quad \forall E, f, u.$

then, for every $1 \leq p < \infty$

 $||T\chi_E||_{L^{p,\infty}((Mf)^{1-p}u)} \lesssim [(Mf)^{1-p}u](E)^{1/p} \quad \forall E, f, u.$

But we also have: If for some $1 < p_0 < \infty$

$$||T\chi_E||_{L^{p_0,\infty}((M\chi_E)^{1-p_0}u)} \lesssim u(E)^{1/p_0} \quad \forall E, u.$$

then, for every $1 \leq p < \infty$

$$||T\chi_E||_{L^{p,\infty}((M\chi_E)^{1-p}u)} \lesssim u(E)^{1/p} \quad \forall E, u.$$

イロト 不同 トイヨト イヨト ヨー ろくで

Reaching L^1 via Extrapolation – C. Domingo-Salazar Extrapolation theory \hat{A}_p weights and a new extrapolation

Statement

Theorem (Carro, D-S)

Given an operator T such that for some $1 \le p_0 < \infty$ and every $u \in A_1$:

$$||T\chi_E||_{L^{p_0,\infty}((M\chi_E)^{1-p_0}u)} \lesssim u(E)^{1/p_0},$$

then for every $u \in A_1$,

 $||T\chi_E||_{L^{1,\infty}(u)} \lesssim u(E).$

◆ロ ▶ ◆帰 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q @

Reaching L^{\perp} via Extrapolation – C. Domingo-Salazar Extrapolation theory \hat{A}_p weights and a new extrapolation

Statement

Theorem (Carro, D-S)

Given an operator T such that for some $1 \le p_0 < \infty$ and every $u \in A_1$:

$$||T\chi_E||_{L^{p_0,\infty}((M\chi_E)^{1-p_0}u)} \lesssim u(E)^{1/p_0},$$

then for every $u \in A_1$,

$$||T\chi_E||_{L^{1,\infty}(u)} \lesssim u(E).$$

Theorem (v. 2.0)

Given an operator T such that for every $u \in A_1$ there is $1 \leq p_0 < \infty$ such that:

$$||T\chi_E||_{L^{p_0,\infty}((M\chi_E)^{1-p_0}u)} \lesssim u(E)^{1/p_0},$$

then for every $u \in A_1$,

 $||T\chi_E||_{L^{1,\infty}(u)} \lesssim u(E).$

Reaching L^{\perp} via Extrapolation – C. Domingo-Salazar Extrapolation theory

 (ε, δ) – atomic operators

From restricted weak-type to weak-type

Question

When does Restricted Weak-Type (1,1) imply Weak-Type (1,1)???

ション ふゆ アメリア メリア しょうくしゃ

Reaching L^{\perp} via Extrapolation – C. Domingo-Salazar Extrapolation theory

 (ε, δ) – atomic operators

From restricted weak-type to weak-type

Question

When does Restricted Weak-Type (1,1) imply Weak-Type (1,1)???

In general, it is not true!! For instance, take the operator

$$Af(x) = \left\| \frac{f(\cdot)\chi_{(0,x)}(\cdot)}{x-\cdot} \right\|_{L^{1,\infty}(0,1)}$$

イロト 不同 トイヨト イヨト ヨー ろくで

which is related to Bourgain's return time theorems.

Reaching L^{\perp} via Extrapolation – C. Domingo-Salazar Extrapolation theory

 $(\varepsilon, \delta) -$ atomic operators

From restricted weak-type to weak-type

Question

When does Restricted Weak-Type (1,1) imply Weak-Type (1,1)???

In general, it is not true!! For instance, take the operator

$$Af(x) = \left\| \frac{f(\cdot)\chi_{(0,x)}(\cdot)}{x-\cdot} \right\|_{L^{1,\infty}(0,1)}$$

which is related to Bourgain's return time theorems.

It is immediate to check that

$$A\chi_E \leq M\chi_E,$$

so it is of restricted weak-type (1,1) for weights in A_1 . However it is not of weak-type (1,1)!!

ション ふゆ アメリア メリア しょうくしゃ

Reaching L^1 via Extrapolation – C. Domingo-Salazar Extrapolation theory

 (ε, δ) – atomic operators

From restricted weak-type to weak-type

Definition

A sublinear operator T is $(\varepsilon,\delta)-\text{atomic}$ if, for every $\varepsilon>0,$ there exists $\delta>0$ s.t.

$$||Ta||_{L^1+L^\infty} \le \varepsilon ||a||_1,$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三三 - のへで

for every δ -atom a $(\int a = 0 \text{ and } \operatorname{supp} a \subseteq Q \text{ with } |Q| \leq \delta)$.

Reaching L^1 via Extrapolation – C. Domingo-Salazar Extrapolation theory

 (ε, δ) – atomic operators

From restricted weak-type to weak-type

Definition

A sublinear operator T is $(\varepsilon,\delta)-\text{atomic}$ if, for every $\varepsilon>0,$ there exists $\delta>0$ s.t.

$$||Ta||_{L^1+L^\infty} \le \varepsilon ||a||_1,$$

for every δ -atom a $(\int a = 0 \text{ and } \operatorname{supp} a \subseteq Q \text{ with } |Q| \leq \delta)$.

For instance:

0

$$Tf(x) = K * f(x),$$

イロト 不同 トイヨト イヨト ヨー ろくで

with $K \in L^p$ for some $1 \le p < \infty$, is (ε, δ) -atomic.

Reaching L^1 via Extrapolation – C. Domingo-Salazar Extrapolation theory

 (ε, δ) – atomic operators

From restricted weak-type to weak-type

Definition

A sublinear operator T is $(\varepsilon,\delta)-$ atomic if, for every $\varepsilon>0,$ there exists $\delta>0$ s.t.

$$||Ta||_{L^1+L^\infty} \le \varepsilon ||a||_1,$$

for every δ -atom a $(\int a = 0 \text{ and } \operatorname{supp} a \subseteq Q \text{ with } |Q| \leq \delta)$.

For instance:

0

$$Tf(x) = K * f(x),$$

with $K\in L^p$ for some $1\leq p<\infty,$ is $(\varepsilon,\delta)-{\rm atomic}.$

• If $\{T_n\}_n$ is a sequence of (ε, δ) -atomic operators, then:

$$T^*f(x) = \sup_n |T_n f(x)|, \text{ and } Tf(x) = \left(\sum_n |T_n f(x)|^q\right)^{1/q},$$

are (ε, δ) -atomic approximable, for every $q \ge 1$.

●●● ● ●●● ●●● ●●●

Reaching L^{\perp} via Extrapolation – C. Domingo-Salazar Extrapolation theory

 (ε, δ) – atomic operators

From restricted weak-type to weak-type

Proposition

If T is (ε, δ) - atomic (approximable), then for every $u \in A_1$:

Restricted Weak-Type $(1,1) \iff$ Weak-Type (1,1).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Remark

This explains why $A_1^{\mathcal{R}} = A_1 !!$

Reaching L^1 via Extrapolation – C. Domingo-Salazar Extrapolation theory (ε, δ) – atomic operators

Applications

More examples:

(i) If $u(x,t) = P_t * f(x)$ is the Poisson integral of f, the Lusin area integral is defined by

$$S_{\alpha}f(x) = \left(\int_{\Gamma_{\alpha}(x)} |\nabla u(y,t)|^2 \frac{dydt}{t^{n-1}}\right)^{1/2},$$

イロト 不良 アイヨア イヨア ヨー ろくぐ

where $\Gamma_{\alpha}(x) = \{(y,t) \in \mathbb{R}^{n+1}_+ : |y-x| < \alpha t\}.$

Reaching L^1 via Extrapolation – C. Domingo-Salazar Extrapolation theory (ε, δ) – atomic operators

Applications

More examples:

(i) If $u(x,t) = P_t * f(x)$ is the Poisson integral of f, the Lusin area integral is defined by

$$S_{\alpha}f(x) = \left(\int_{\Gamma_{\alpha}(x)} |\nabla u(y,t)|^2 \frac{dydt}{t^{n-1}}\right)^{1/2},$$

where $\Gamma_{\alpha}(x) = \{(y,t) \in \mathbb{R}^{n+1}_+ : |y-x| < \alpha t\}.$ (ii) The Littlewood-Paley *g*-function

$$g(f)(x) = \left(\int_0^\infty t |\nabla u(x,t)|^2 dt\right)^{1/2}$$

イロト 不同 トイヨト イヨト ヨー ろくで

Reaching L^1 via Extrapolation – C. Domingo-Salazar Extrapolation theory (ε, δ) – atomic operators

Applications

More examples:

(i) If $u(x,t) = P_t * f(x)$ is the Poisson integral of f, the Lusin area integral is defined by

$$S_{\alpha}f(x) = \left(\int_{\Gamma_{\alpha}(x)} |\nabla u(y,t)|^2 \frac{dydt}{t^{n-1}}\right)^{1/2},$$

where $\Gamma_{\alpha}(x) = \{(y,t) \in \mathbb{R}^{n+1}_+ : |y-x| < \alpha t\}.$

(ii) The Littlewood-Paley g-function

$$g(f)(x) = \left(\int_0^\infty t |\nabla u(x,t)|^2 dt\right)^{1/2}$$

(iii) The intrinsic square function G_{α} (introduced by M. Wilson), Haar shift operators, singular integrals, averages of operators...

Bochner-Riesz

Definition (The Bochner-Riesz operator)

Given $\lambda > 0$,

$$\widehat{(T_{\lambda}f)}(\xi) = (1 - |\xi|^2)^{\lambda}_{+}\widehat{f}(\xi).$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ - 目 - のへで

Bochner-Riesz

Definition (The Bochner-Riesz operator)

Given $\lambda > 0$,

$$\widehat{(T_{\lambda}f)}(\xi) = (1 - |\xi|^2)^{\lambda}_{+}\widehat{f}(\xi).$$

When $\lambda > \frac{n-1}{2}$,

 $|T_{\lambda}f| \lesssim Mf.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Bochner-Riesz

Definition (The Bochner-Riesz operator)

Given $\lambda > 0$,

$$\widehat{(T_{\lambda}f)}(\xi) = (1 - |\xi|^2)^{\lambda}_{+}\widehat{f}(\xi).$$

When $\lambda > rac{n-1}{2}$,

 $|T_{\lambda}f| \lesssim Mf.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

From now on, we fix $\lambda = \frac{n-1}{2} \rightsquigarrow$ THE CRITICAL INDEX.

The (short) story

• In 1988, M. Christ shows that T_{λ} is of weak-type (1,1) (without weights).

< ロ > < 団 > < 団 > < 団 > < 団 > < 団 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The (short) story

- In 1988, M. Christ shows that T_{λ} is of weak-type (1,1) (without weights).
- In 1992, X. Shi and Q. Sun prove that T_{λ} is of strong-type (p,p) for $A_p.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The (short) story

- In 1988, M. Christ shows that T_{λ} is of weak-type (1,1) (without weights).
- In 1992, X. Shi and Q. Sun prove that T_{λ} is of strong-type (p,p) for $A_p.$

ション ふゆ アメリア メリア しょうくしゃ

• In 1996, A. Vargas obtains the weak-type (1,1) for weights in A_1 .

Our result

We prove that

Theorem (Carro, D-S)

Given $u \in A_1$, for some $1 < p_0 < \infty$

$$||T_{\lambda}(\chi_E)||_{L^{p_0,\infty}((M\chi_E)^{1-p_0}u)} \lesssim u(E)^{1/p_0}.$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

Our result

We prove that

Theorem (Carro, D-S)

Given $u \in A_1$, for some $1 < p_0 < \infty$

$$||T_{\lambda}(\chi_E)||_{L^{p_0,\infty}((M\chi_E)^{1-p_0}u)} \lesssim u(E)^{1/p_0}.$$

• This is stronger than A. Vargas' result about the weak-type (1,1) for A_1 weights.

イロト 不良 アイヨア イヨア ヨー ろくぐ

• It also allows to get endpoint results for average operators, as we will see later on.

Decomposition of the kernel

We use the standard decomposition of the convolution kernel:

$$T_{\lambda}f = K * f = \left(\sum_{j=1}^{\infty} K_j\right) * f,$$

ション ふゆ アメリア メリア しょうくしゃ

with $|K_j(x)| \lesssim 2^{-nj} \chi_{B(0,2^j)}(x)$. Clearly, for every $j \ge 1$, $|K_j * f(x)| \lesssim Mf(x)$.

Reverse Hölder to the rescue in A_p -theory

ション ふゆ アメリア メリア しょうくしゃ

Fix $w \in A_2$. We have, for every $j \ge 1$:

• $||K_j * f||_2 \lesssim 2^{-c_n j} ||f||_2$, (M. Christ)

Reverse Hölder to the rescue in A_p -theory

ション ふゆ アメリア メリア しょうくしゃ

Fix $w \in A_2$. We have, for every $j \ge 1$:

- $||K_j * f||_2 \lesssim 2^{-c_n j} ||f||_2$, (M. Christ)
- $||K_j * f||_{L^2(w)} \lesssim ||f||_{L^2(w)}$.

Reverse Hölder to the rescue in A_p -theory

Fix $w \in A_2$. We have, for every $j \ge 1$:

- $||K_j * f||_2 \lesssim 2^{-c_n j} ||f||_2$, (M. Christ)
- $||K_j * f||_{L^2(w)} \lesssim ||f||_{L^2(w)}$.

Interpolating with change of measure: For every $0 < \theta < 1$,

うして ふゆう ふほう ふほう しゅうろう

•
$$||K_j * f||_{L^2(w^{\theta})} \lesssim 2^{-c_n j(1-\theta)} ||f||_{L^2(w^{\theta})}.$$

Reverse Hölder to the rescue in A_p -theory

Fix $w \in A_2$. We have, for every $j \ge 1$:

- $||K_j * f||_2 \lesssim 2^{-c_n j} ||f||_2$, (M. Christ)
- $||K_j * f||_{L^2(w)} \lesssim ||f||_{L^2(w)}$.

Interpolating with change of measure: For every $0 < \theta < 1$,

•
$$||K_j * f||_{L^2(w^{\theta})} \lesssim 2^{-c_n j(1-\theta)} ||f||_{L^2(w^{\theta})}$$
.

We take $w^{1+\varepsilon} \in A_2$, $\theta = \frac{1}{1+\varepsilon}$, and we are done for p = 2. We use Rubio de Francia's extrapolation to conclude that

$$T_{\lambda} : L^p(w) \longrightarrow L^p(w), \quad w \in A_p \quad (1$$

ション ふゆ アメリア メリア しょうくしゃ

Idea Behind the Proof of:

Theorem (Carro, D-S)

Given $u \in A_1$, for some $1 < p_0 < \infty$

$$||T_{\lambda}(\chi_E)||_{L^{p_0,\infty}((M\chi_E)^{1-p_0}u)} \lesssim u(E)^{1/p_0}.$$

イロト 不同 トイヨト イヨト ヨー ろくで

- \checkmark Decomposition of the kernel $K = \sum_j K_j$,
- \checkmark Decomposition of the set $E = \bigcup_k E_k$,
- ✓ Main Lemma.

Decomposition of E

Given $0<\alpha<1,$ we have disjoint dyadic cubes $\{Q_i^k\}_{i,k}$ and we can decompose a set $E\subseteq \mathbb{R}^n$

$$E = \bigcup_{k \ge 0} E_k = \bigcup_{k \ge 0} E \cap \left(\cup_i Q_i^k \right), \quad \text{with } \frac{|E \cap Q_i^k|}{2^{nk}} \approx \alpha.$$

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ● ● ● ● ●

Main Lemma

Given $0 < \alpha < 1$, we can decompose a set $E \subseteq \mathbb{R}^n$

$$E = \bigcup_{k \ge 0} E_k = \bigcup_{k \ge 0} E \cap \left(\cup_i Q_i^k \right).$$

Lemma

Let $0 < \alpha < 1$, $E = \cup_k E_k$ and $u \in A_1$. Then, for every $1 \le s < \infty$, if

$$F_s(x) := \sum_{j=s}^{\infty} K_j * \chi_{E_{j-s}}(x),$$

(a) $||F_s||_2^2 \lesssim 2^{-c_n s} \alpha |E|$,

Main Lemma

Given $0 < \alpha < 1$, we can decompose a set $E \subseteq \mathbb{R}^n$

$$E = \bigcup_{k \ge 0} E_k = \bigcup_{k \ge 0} E \cap \left(\cup_i Q_i^k \right).$$

Lemma

Let $0 < \alpha < 1$, $E = \cup_k E_k$ and $u \in A_1$. Then, for every $1 \le s < \infty$, if

$$F_s(x) := \sum_{j=s}^{\infty} K_j * \chi_{E_{j-s}}(x),$$

(a) $||F_s||_2^2 \lesssim 2^{-c_n s} \alpha |E|$, (b) $||F_s||_{L^2(u)}^2 \lesssim \alpha u(E)$,

Main Lemma

Given $0 < \alpha < 1$, we can decompose a set $E \subseteq \mathbb{R}^n$

$$E = \bigcup_{k \ge 0} E_k = \bigcup_{k \ge 0} E \cap \left(\cup_i Q_i^k \right).$$

Lemma

Let $0 < \alpha < 1$, $E = \cup_k E_k$ and $u \in A_1$. Then, for every $1 \le s < \infty$, if

$$F_s(x) := \sum_{j=s}^{\infty} K_j * \chi_{E_{j-s}}(x),$$

(a) $||F_s||_2^2 \lesssim 2^{-c_n s} \alpha |E|$, (b) $||F_s||_{L^2(u)}^2 \lesssim \alpha u(E)$, (c) $||F_s||_{L^2(u)}^2 \lesssim \alpha u(E)$,

(4日) (四) (日) (日) (日) (日) (日)

Main Lemma

Given $0<\alpha<1,$ we can decompose a set $E\subseteq \mathbb{R}^n$

$$E = \bigcup_{k \ge 0} E_k = \bigcup_{k \ge 0} E \cap \left(\cup_i Q_i^k \right).$$

Lemma

Let $0 < \alpha < 1$, $E = \cup_k E_k$ and $u \in A_1$. Then, for every $1 \le s < \infty$, if

$$F_s(x) := \sum_{j=s}^{\infty} K_j * \chi_{E_{j-s}}(x),$$

(a)
$$||F_s||_2^2 \lesssim 2^{-c_n s} \alpha |E|$$
,
(b) $||F_s||_{L^2(u)}^2 \lesssim \alpha u(E)$,
(c) $||F_s||_{L^2((M_{\chi_E})^{-1})}^2 \lesssim |E|$,
(d) $||F_s||_{L^2(u)}^2 \lesssim 2^{-s\varepsilon} \alpha u(E)$,

Main Lemma

Given $0<\alpha<1,$ we can decompose a set $E\subseteq \mathbb{R}^n$

$$E = \bigcup_{k \ge 0} E_k = \bigcup_{k \ge 0} E \cap \left(\cup_i Q_i^k \right).$$

Lemma

Let $0 < \alpha < 1$, $E = \cup_k E_k$ and $u \in A_1$. Then, for every $1 \le s < \infty$, if

$$F_s(x) := \sum_{j=s}^{\infty} K_j * \chi_{E_{j-s}}(x),$$

Weighted results for T_{λ}

So we have that

$$||T_{\lambda}(\chi_E)||_{L^{p_0,\infty}((M\chi_E)^{1-p_0}u)} \lesssim u(E)^{1/p_0}, \quad (u \in A_1, p_0 > 1),$$

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Weighted results for T_{λ}

So we have that

$$||T_{\lambda}(\chi_E)||_{L^{p_0,\infty}((M\chi_E)^{1-p_0}u)} \lesssim u(E)^{1/p_0}, \quad (u \in A_1, p_0 > 1),$$

$$\begin{aligned} & \downarrow \\ \|T_{\lambda}f\|_{L^{1,\infty}(u)} \lesssim \|f\|_{L^{1}(u)}, \quad (u \in A_{1}), \end{aligned}$$

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○
Reaching L¹ via Extrapolation – C. Domingo-Salazar The Bochner-Riesz operator at the critical index A restricted weak-type estimate

Weighted results for T_{λ}

So we have that

$$||T_{\lambda}(\chi_E)||_{L^{p_0,\infty}((M\chi_E)^{1-p_0}u)} \lesssim u(E)^{1/p_0}, \quad (u \in A_1, p_0 > 1),$$

$$\begin{aligned} & \downarrow \\ \|T_{\lambda}f\|_{L^{1,\infty}(u)} \lesssim \|f\|_{L^{1}(u)}, \quad (u \in A_{1}), \\ & \downarrow \\ \|T_{\lambda}f\|_{L^{p}(w)} \lesssim \|f\|_{L^{p}(w)}, \quad (p > 1, w \in A_{p}). \end{aligned}$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

An application

Consider a radial Fourier multiplier

$$\widehat{T_mf}(\xi)=m(|\xi|^2)\widehat{f}(\xi),\quad \xi\in\mathbb{R}^n,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where $m \in L^{\infty}(0,\infty)$ such that $t^{\frac{n-1}{2}}D^{\frac{n+1}{2}}m(t) \in L^{1}(0,\infty).$

An application

Consider a radial Fourier multiplier

$$\widehat{T_m f}(\xi) = m(|\xi|^2)\widehat{f}(\xi), \quad \xi \in \mathbb{R}^n,$$

where $m \in L^{\infty}(0,\infty)$ such that $t^{\frac{n-1}{2}}D^{\frac{n+1}{2}}m(t) \in L^{1}(0,\infty)$. Then, one can prove that there is $\Phi \in L^{1}(0,\infty)$ such that

$$m(|\xi|^2) = \int_0^\infty \left(1 - \frac{|\xi|^2}{s^2}\right)_+^{\frac{n-1}{2}} \Phi(s) ds$$

ション ふゆ アメリア メリア しょうくしゃ

An application

With this, we have

$$T_m f(x) = \int_0^\infty B_s f(x) \Phi(s) ds,$$

where

$$\widehat{B_s f}(\xi) = \left(1 - \frac{|\xi|^2}{s^2}\right)_+^{\frac{n-1}{2}} \widehat{f}(\xi).$$

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

An application

With this, we have

$$T_m f(x) = \int_0^\infty B_s f(x) \Phi(s) ds,$$

where

$$\widehat{B_sf}(\xi) = \left(1 - \frac{|\xi|^2}{s^2}\right)_+^{\frac{n-1}{2}} \widehat{f}(\xi).$$

If K is the kernel associated with T_{λ} , and K_s with B_s , then

$$K_s(x) = s^n K(sx).$$

An application

With this, we have

$$T_m f(x) = \int_0^\infty B_s f(x) \Phi(s) ds,$$

where

$$\widehat{B_s f}(\xi) = \left(1 - \frac{|\xi|^2}{s^2}\right)_+^{\frac{n-1}{2}} \widehat{f}(\xi).$$

If K is the kernel associated with T_{λ} , and K_s with B_s , then

$$K_s(x) = s^n K(sx).$$

From the estimate for T_{λ} , we deduce the uniform bound

$$||B_s \chi_E||_{L^{p_0,\infty}((M\chi_E)^{1-p_0}u)} \lesssim u(E)^{1/p_0}.$$

ション ふゆ アメリア メリア しょうくしゃ

An application

Using now that $L^{p_0,\infty}$ is a Banach space, we can use Minkowski's inequality!!

$$\|T_m \chi_E\|_{L^{p_0,\infty}((M\chi_E)^{1-p_0}u)} \lesssim \int_0^\infty \|B_s \chi_E\| |\Phi(s)| ds \lesssim u(E)^{1/p_0}.$$

An application

Using now that $L^{p_0,\infty}$ is a Banach space, we can use Minkowski's inequality!!

$$\|T_m \chi_E\|_{L^{p_0,\infty}((M\chi_E)^{1-p_0}u)} \lesssim \int_0^\infty \|B_s \chi_E\| |\Phi(s)| ds \lesssim u(E)^{1/p_0}.$$

From this, we extrapolate down to p = 1:

$$||T_m f||_{L^{1,\infty}(u)} \lesssim ||f||_{L^1(u)}, \quad u \in A_1.$$

Remark

Notice that if we only have a weak-type (1,1) estimate, averages do not inherit this property.

Reaching L^{\perp} via Extrapolation – C. Domingo-Salazar Thank you for your attention!

Muchas Gracias!

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○